Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 390
Filtrar
1.
J Exp Med ; 221(4)2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38442272

RESUMO

Meningeal lymphatic vessels (MLVs) promote tissue clearance and immune surveillance in the central nervous system (CNS). Vascular endothelial growth factor-C (VEGF-C) regulates MLV development and maintenance and has therapeutic potential for treating neurological disorders. Herein, we investigated the effects of VEGF-C overexpression on brain fluid drainage and ischemic stroke outcomes in mice. Intracerebrospinal administration of an adeno-associated virus expressing mouse full-length VEGF-C (AAV-mVEGF-C) increased CSF drainage to the deep cervical lymph nodes (dCLNs) by enhancing lymphatic growth and upregulated neuroprotective signaling pathways identified by single nuclei RNA sequencing of brain cells. In a mouse model of ischemic stroke, AAV-mVEGF-C pretreatment reduced stroke injury and ameliorated motor performances in the subacute stage, associated with mitigated microglia-mediated inflammation and increased BDNF signaling in brain cells. Neuroprotective effects of VEGF-C were lost upon cauterization of the dCLN afferent lymphatics and not mimicked by acute post-stroke VEGF-C injection. We conclude that VEGF-C prophylaxis promotes multiple vascular, immune, and neural responses that culminate in a protection against neurological damage in acute ischemic stroke.


Assuntos
AVC Isquêmico , Acidente Vascular Cerebral , Animais , Camundongos , Fator C de Crescimento do Endotélio Vascular , Doenças Neuroinflamatórias , Drenagem
2.
Dev Cell ; 59(3): 293-294, 2024 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-38320483

RESUMO

In developing embryos, downregulation of lymphatic endothelial proliferation is needed for maturation of lymphatic vessels into a hierarchical network. In this issue of Developmental Cell, Carlantoni discover that phosphodiesterase2A controls lymphatic endothelial growth arrest and maturation via regulation of cGMP, p38 MAP kinase, and Notch pathway.


Assuntos
Vasos Linfáticos , Diester Fosfórico Hidrolases , Diester Fosfórico Hidrolases/metabolismo , Linfangiogênese , Vasos Linfáticos/metabolismo , Endotélio Linfático/metabolismo
3.
J Clin Invest ; 134(4)2024 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-38357924

RESUMO

The rediscovery of meningeal lymphatic vessels (MLVs) has sparked research interest in their function in numerous neurological pathologies. Craniosynostosis (CS) is caused by a premature fusion of cranial sutures during development. In this issue of the JCI, Matrongolo and colleagues show that Twist1-haploinsufficient mice that develop CS exhibit raised intracranial pressure, diminished cerebrospinal fluid (CSF) outflow, and impaired paravascular CSF-brain flow; all features that were associated with MLV defects and exacerbated pathology in mouse models of Alzheimer's disease. Activation of the mechanosensor Piezo1 with Yoda1 restored MLV function and CSF perfusion in CS models and in aged mice, opening an avenue for further development of therapeutics.


Assuntos
Doença de Alzheimer , Craniossinostoses , Vasos Linfáticos , Camundongos , Animais , Encéfalo , Vasos Linfáticos/patologia , Craniossinostoses/genética , Craniossinostoses/patologia , Doença de Alzheimer/patologia , Modelos Animais de Doenças , Canais Iônicos
4.
Arterioscler Thromb Vasc Biol ; 44(1): 177-191, 2024 01.
Artigo em Inglês | MEDLINE | ID: mdl-38150518

RESUMO

BACKGROUND: The heart relies heavily on external fatty acid (FA) for energy production. VEGFB (vascular endothelial growth factor B) has been shown to promote endothelial FA uptake by upregulating FA transporters. However, its impact on LPL (lipoprotein lipase)-mediated lipolysis of lipoproteins, a major source of FA for cardiac use, is unknown. METHODS: VEGFB transgenic (Tg) rats were generated by using the α-myosin heavy chain promoter to drive cardiomyocyte-specific overexpression. To measure coronary LPL activity, Langendorff hearts were perfused with heparin. In vivo positron emission tomography imaging with [18F]-triglyceride-fluoro-6-thia-heptadecanoic acid and [11C]-palmitate was used to determine cardiac FA uptake. Mitochondrial FA oxidation was evaluated by high-resolution respirometry. Streptozotocin was used to induce diabetes, and cardiac function was monitored using echocardiography. RESULTS: In Tg hearts, the vectorial transfer of LPL to the vascular lumen is obstructed, resulting in LPL buildup within cardiomyocytes, an effect likely due to coronary vascular development with its associated augmentation of insulin action. With insulin insufficiency following fasting, VEGFB acted unimpeded to facilitate LPL movement and increase its activity at the coronary lumen. In vivo PET imaging following fasting confirmed that VEGFB induced a greater FA uptake to the heart from circulating lipoproteins as compared with plasma-free FAs. As this was associated with augmented mitochondrial oxidation, lipid accumulation in the heart was prevented. We further examined whether this property of VEGFB on cardiac metabolism could be useful following diabetes and its associated cardiac dysfunction, with attendant loss of metabolic flexibility. In Tg hearts, diabetes inhibited myocyte VEGFB gene expression and protein secretion together with its downstream receptor signaling, effects that could explain its lack of cardioprotection. CONCLUSIONS: Our study highlights the novel role of VEGFB in LPL-derived FA supply and utilization. In diabetes, loss of VEGFB action may contribute toward metabolic inflexibility, lipotoxicity, and development of diabetic cardiomyopathy.


Assuntos
Cardiomiopatias Diabéticas , Insulina , Ratos , Animais , Insulina/farmacologia , Fator B de Crescimento do Endotélio Vascular/genética , Fator B de Crescimento do Endotélio Vascular/metabolismo , Ratos Wistar , Miócitos Cardíacos/metabolismo , Ácidos Graxos/metabolismo , Cardiomiopatias Diabéticas/genética , Cardiomiopatias Diabéticas/metabolismo , Triglicerídeos/metabolismo , Lipase Lipoproteica/metabolismo , Miocárdio/metabolismo
5.
Acta Neurochir (Wien) ; 165(11): 3353-3360, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37749289

RESUMO

BACKGROUND: It is estimated that significant (3.2%) of population carries intracranial aneurysm (IA). An increasing number of imaging studies have caused that the chance of finding an incidental aneurysm is becoming more common. Since IA rupture causes subarachnoidal hemorrhage (SAH) and have significant mortality and morbidity prophylactic treatment should be considered when IA is detected. The benefit and risk of treatment of IA is based on epidemiological estimate which takes account patient and aneurysm characteristics. However we know that aneurysm rupture is biological process where inflammation of aneurysm wall is actively leading to degeneration of aneurysm wall and finally weakens it until it bursts. Until now, there have not been imaging method to detect inflammatory process of aneurysm wall METHODS: We created targeting immunoliposome for use in the imaging of aneurysm. Immunoliposome comprises antibodies against at least one vascular inflammatory marker associated with aneurysm inflammation and a label and/or a contrast agent. RESULTS: Histological analysis of IAs where immunoliposome comprises antibodies against vascular inflammation with a label shows promising results for selectively detecting aneurysms inflammation. In magnetic resonance imaging (MRI) we were able to detect immunoliposomes carrying gadolinium. CONCLUSION: Our work opens a new avenue for using contrast labeled immunoliposomes for detecting rupture-prone aneurysms. Immunoliposomes can cary gadolinium and selectively bind to inflammatory section of aneurysm that can be detected with MRI. Further research is needed to develop immunoliposomes to be used with MRI in humans to target treatment to those patients who benefit from it the most.


Assuntos
Aneurisma Roto , Aneurisma Intracraniano , Hemorragia Subaracnóidea , Humanos , Aneurisma Intracraniano/epidemiologia , Gadolínio , Inflamação/complicações , Inflamação/patologia , Fatores de Risco , Imageamento por Ressonância Magnética/efeitos adversos , Aneurisma Roto/diagnóstico por imagem , Aneurisma Roto/epidemiologia , Hemorragia Subaracnóidea/complicações
6.
Neuron ; 111(23): 3745-3764.e7, 2023 Dec 06.
Artigo em Inglês | MEDLINE | ID: mdl-37776854

RESUMO

Leptomeninges, consisting of the pia mater and arachnoid, form a connective tissue investment and barrier enclosure of the brain. The exact nature of leptomeningeal cells has long been debated. In this study, we identify five molecularly distinct fibroblast-like transcriptomes in cerebral leptomeninges; link them to anatomically distinct cell types of the pia, inner arachnoid, outer arachnoid barrier, and dural border layer; and contrast them to a sixth fibroblast-like transcriptome present in the choroid plexus and median eminence. Newly identified transcriptional markers enabled molecular characterization of cell types responsible for adherence of arachnoid layers to one another and for the arachnoid barrier. These markers also proved useful in identifying the molecular features of leptomeningeal development, injury, and repair that were preserved or changed after traumatic brain injury. Together, the findings highlight the value of identifying fibroblast transcriptional subsets and their cellular locations toward advancing the understanding of leptomeningeal physiology and pathology.


Assuntos
Aracnoide-Máter , Meninges , Camundongos , Animais , Aracnoide-Máter/anatomia & histologia , Pia-Máter , Plexo Corióideo , Encéfalo
7.
bioRxiv ; 2023 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-37398128

RESUMO

Meningeal lymphatic vessels promote tissue clearance and immune surveillance in the central nervous system (CNS). Vascular endothelium growth factor-C (VEGF-C) is essential for meningeal lymphatic development and maintenance and has therapeutic potential for treating neurological disorders, including ischemic stroke. We have investigated the effects of VEGF-C overexpression on brain fluid drainage, single cell transcriptome in the brain, and stroke outcomes in adult mice. Intra-cerebrospinal fluid administration of an adeno-associated virus expressing VEGF-C (AAV-VEGF-C) increases the CNS lymphatic network. Post-contrast T1 mapping of the head and neck showed that deep cervical lymph node size and drainage of CNS-derived fluids were increased. Single nuclei RNA sequencing revealed a neuro-supportive role of VEGF-C via upregulation of calcium and brain-derived neurotrophic factor (BDNF) signaling pathways in brain cells. In a mouse model of ischemic stroke, AAV-VEGF-C pretreatment reduced stroke injury and ameliorated motor performances in the subacute stage. AAV-VEGF-C thus promotes CNS-derived fluid and solute drainage, confers neuroprotection, and reduces ischemic stroke damage. Short abstract: Intrathecal delivery of VEGF-C increases the lymphatic drainage of brain-derived fluids confers neuroprotection, and improves neurological outcomes after ischemic stroke.

8.
Circ Res ; 133(4): 333-349, 2023 08 04.
Artigo em Inglês | MEDLINE | ID: mdl-37462027

RESUMO

BACKGROUND: Lymphatic vessels are responsible for tissue drainage, and their malfunction is associated with chronic diseases. Lymph uptake occurs via specialized open cell-cell junctions between capillary lymphatic endothelial cells (LECs), whereas closed junctions in collecting LECs prevent lymph leakage. LEC junctions are known to dynamically remodel in development and disease, but how lymphatic permeability is regulated remains poorly understood. METHODS: We used various genetically engineered mouse models in combination with cellular, biochemical, and molecular biology approaches to elucidate the signaling pathways regulating junction morphology and function in lymphatic capillaries. RESULTS: By studying the permeability of intestinal lacteal capillaries to lipoprotein particles known as chylomicrons, we show that ROCK (Rho-associated kinase)-dependent cytoskeletal contractility is a fundamental mechanism of LEC permeability regulation. We show that chylomicron-derived lipids trigger neonatal lacteal junction opening via ROCK-dependent contraction of junction-anchored stress fibers. LEC-specific ROCK deletion abolished junction opening and plasma lipid uptake. Chylomicrons additionally inhibited VEGF (vascular endothelial growth factor)-A signaling. We show that VEGF-A antagonizes LEC junction opening via VEGFR (VEGF receptor) 2 and VEGFR3-dependent PI3K (phosphatidylinositol 3-kinase)/AKT (protein kinase B) activation of the small GTPase RAC1 (Rac family small GTPase 1), thereby restricting RhoA (Ras homolog family member A)/ROCK-mediated cytoskeleton contraction. CONCLUSIONS: Our results reveal that antagonistic inputs into ROCK-dependent cytoskeleton contractions regulate the interconversion of lymphatic junctions in the intestine and in other tissues, providing a tunable mechanism to control the lymphatic barrier.


Assuntos
Vasos Linfáticos , Proteínas Monoméricas de Ligação ao GTP , Camundongos , Animais , Fator A de Crescimento do Endotélio Vascular/metabolismo , Células Endoteliais/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Quilomícrons/metabolismo , Vasos Linfáticos/metabolismo , Proteínas Monoméricas de Ligação ao GTP/metabolismo , Permeabilidade Capilar
10.
Nat Cardiovasc Res ; 2(3): 307-321, 2023 Mar 13.
Artigo em Inglês | MEDLINE | ID: mdl-37476204

RESUMO

Leukocytes and resident cells in the arterial wall contribute to atherosclerosis, especially at sites of disturbed blood flow. Expression of endothelial Tie1 receptor tyrosine kinase is enhanced at these sites, and attenuation of its expression reduces atherosclerotic burden and decreases inflammation. However, Tie2 tyrosine kinase function in atherosclerosis is unknown. Here we provide genetic evidence from humans and from an atherosclerotic mouse model to show that TIE2 is associated with protection from coronary artery disease. We show that deletion of Tie2, or both Tie2 and Tie1, in the arterial endothelium promotes atherosclerosis by increasing Foxo1 nuclear localization, endothelial adhesion molecule expression and accumulation of immune cells. We also show that Tie2 is expressed in a subset of aortic fibroblasts, and its silencing in these cells increases expression of inflammation-related genes. Our findings indicate that unlike Tie1, the Tie2 receptor functions as the dominant endothelial angiopoietin receptor that protects from atherosclerosis.

11.
Arterioscler Thromb Vasc Biol ; 43(8): e323-e338, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37317851

RESUMO

BACKGROUND: Vascular growth followed by vessel specification is crucial for the establishment of a hierarchical blood vascular network. We have shown that TIE2 is required for vein development while little is known about its homologue TIE1 (tyrosine kinase with immunoglobulin-like and EGF [epithelial growth factor]-like domains 1) in this process. METHODS: We analyzed functions of TIE1 as well as its synergy with TIE2 in the regulation of vein formation by employing genetic mouse models targeting Tie1, Tek, and Nr2f2, together with in vitro cultured endothelial cells to decipher the underlying mechanism. RESULTS: Cardinal vein growth appeared normal in TIE1-deficient mice, whereas TIE2 deficiency altered the identity of cardinal vein endothelial cells with the aberrant expression of DLL4 (delta-like canonical Notch ligand 4). Interestingly, the growth of cutaneous veins, which was initiated at approximately embryonic day 13.5, was retarded in mice lack of TIE1. TIE1 deficiency disrupted the venous integrity, displaying increased sprouting angiogenesis and vascular bleeding. Abnormal venous sprouts with defective arteriovenous alignment were also observed in the mesenteries of Tie1-deleted mice. Mechanistically, TIE1 deficiency resulted in the decreased expression of venous regulators including TIE2 and COUP-TFII (chicken ovalbumin upstream promoter transcription factor, encoded by Nr2f2, nuclear receptor subfamily 2 group F member 2) while angiogenic regulators were upregulated. The alteration of TIE2 level by TIE1 insufficiency was further confirmed by the siRNA-mediated knockdown of Tie1 in cultured endothelial cells. Interestingly, TIE2 insufficiency also reduced the expression of TIE1. Combining the endothelial deletion of Tie1 with 1 null allele of Tek resulted in a progressive increase of vein-associated angiogenesis leading to the formation of vascular tufts in retinas, whereas the loss of Tie1 alone produced a relatively mild venous defect. Furthermore, the induced deletion of endothelial Nr2f2 decreased both TIE1 and TIE2. CONCLUSIONS: Findings from this study imply that TIE1 and TIE2, together with COUP-TFII, act in a synergistic manner to restrict sprouting angiogenesis during the development of venous system.


Assuntos
Receptor de TIE-1 , Receptor TIE-2 , Camundongos , Animais , Receptor de TIE-1/genética , Receptor de TIE-1/metabolismo , Receptor TIE-2/genética , Receptor TIE-2/metabolismo , Células Endoteliais/metabolismo , Transdução de Sinais , Veias
12.
Methods Protoc ; 6(2)2023 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-37104025

RESUMO

Traditional Western blotting is one of the most used analytical techniques in biological research. However, it can be time-consuming and suffer from a lack of reproducibility. Consequently, devices with different degrees of automation have been developed. These include semi-automated techniques and fully automated devices that replicate all stages downstream of the sample preparation, including sample size separation, immunoblotting, imaging, and analysis. We directly compared traditional Western blotting with two different automated systems, iBind™ Flex, which is a semi-automated system designed to perform the immunoblotting, and JESS Simple Western™, a fully automated and capillary-based system performing all steps downstream of sample preparation and loading, including imaging and image analysis. We found that a fully automated system can save time and importantly offer valuable sensitivity. This is particularly beneficial for limited sample amounts. The downside of automation is the cost of devices and reagents. Nevertheless, automation can be a good option to increase output and facilitate sensitive protein analyses.

14.
Vaccine ; 41(20): 3233-3246, 2023 05 11.
Artigo em Inglês | MEDLINE | ID: mdl-37085458

RESUMO

The ongoing SARS-CoV-2 pandemic is controlled but not halted by public health measures and mass vaccination strategies which have exclusively relied on intramuscular vaccines. Intranasal vaccines can prime or recruit to the respiratory epithelium mucosal immune cells capable of preventing infection. Here we report a comprehensive series of studies on this concept using various mouse models, including HLA class II-humanized transgenic strains. We found that a single intranasal (i.n.) dose of serotype-5 adenoviral vectors expressing either the receptor binding domain (Ad5-RBD) or the complete ectodomain (Ad5-S) of the SARS-CoV-2 spike protein was effective in inducing i) serum and bronchoalveolar lavage (BAL) anti-spike IgA and IgG, ii) robust SARS-CoV-2-neutralizing activity in the serum and BAL, iii) rigorous spike-directed T helper 1 cell/cytotoxic T cell immunity, and iv) protection of mice from a challenge with the SARS-CoV-2 beta variant. Intramuscular (i.m.) Ad5-RBD or Ad5-S administration did not induce serum or BAL IgA, and resulted in lower neutralizing titers in the serum. Moreover, prior immunity induced by an intramuscular mRNA vaccine could be potently enhanced and modulated towards a mucosal IgA response by an i.n. Ad5-S booster. Notably, Ad5 DNA was found in the liver or spleen after i.m. but not i.n. administration, indicating a lack of systemic spread of the vaccine vector, which has been associated with a risk of thrombotic thrombocytopenia. Unlike in otherwise genetically identical HLA-DQ6 mice, in HLA-DQ8 mice Ad5-RBD vaccine was inferior to Ad5-S, suggesting that the RBD fragment does not contain a sufficient collection of helper-T cell epitopes to constitute an optimal vaccine antigen. Our data add to previous promising preclinical results on intranasal SARS-CoV-2 vaccination and support the potential of this approach to elicit mucosal immunity for preventing transmission of SARS-CoV-2.


Assuntos
COVID-19 , Vacinas Virais , Humanos , Animais , Camundongos , Glicoproteína da Espícula de Coronavírus/genética , Vacinas contra COVID-19 , Anticorpos Neutralizantes , Anticorpos Antivirais , COVID-19/prevenção & controle , SARS-CoV-2 , Administração Intranasal , Modelos Animais de Doenças , Imunoglobulina A
15.
Sci Immunol ; 8(82): eabq0375, 2023 04 14.
Artigo em Inglês | MEDLINE | ID: mdl-37058549

RESUMO

The recent discovery of lymphatic vessels (LVs) in the dura mater, the outermost layer of meninges around the central nervous system (CNS), has opened a possibility for the development of alternative therapeutics for CNS disorders. The vascular endothelial growth factor C (VEGF-C)/VEGF receptor 3 (VEGFR3) signaling pathway is essential for the development and maintenance of dural LVs. However, its significance in mediating dural lymphatic function in CNS autoimmunity is unclear. We show that inhibition of the VEGF-C/VEGFR3 signaling pathway using a monoclonal VEGFR3-blocking antibody, a soluble VEGF-C/D trap, or deletion of the Vegfr3 gene in adult lymphatic endothelium causes notable regression and functional impairment of dural LVs but has no effect on the development of CNS autoimmunity in mice. During autoimmune neuroinflammation, the dura mater was only minimally affected, and neuroinflammation-induced helper T (TH) cell recruitment, activation, and polarization were significantly less pronounced in the dura mater than in the CNS. In support of this notion, during autoimmune neuroinflammation, blood vascular endothelial cells in the cranial and spinal dura expressed lower levels of cell adhesion molecules and chemokines, and antigen-presenting cells (i.e., macrophages and dendritic cells) had lower expression of chemokines, MHC class II-associated molecules, and costimulatory molecules than their counterparts in the brain and spinal cord, respectively. The significantly weaker TH cell responses in the dura mater may explain why dural LVs do not contribute directly to CNS autoimmunity.


Assuntos
Vasos Linfáticos , Fator C de Crescimento do Endotélio Vascular , Animais , Camundongos , Células Endoteliais/metabolismo , Linfangiogênese , Doenças Neuroinflamatórias , Transdução de Sinais , Fator C de Crescimento do Endotélio Vascular/metabolismo , Fator C de Crescimento do Endotélio Vascular/farmacologia , Receptor 3 de Fatores de Crescimento do Endotélio Vascular/metabolismo
16.
EMBO Rep ; 24(5): e56689, 2023 05 04.
Artigo em Inglês | MEDLINE | ID: mdl-37009825

RESUMO

The growth factor Neuregulin-1 (NRG-1) regulates myocardial growth and is currently under clinical investigation as a treatment for heart failure. Here, we demonstrate in several in vitro and in vivo models that STAT5b mediates NRG-1/EBBB4-stimulated cardiomyocyte growth. Genetic and chemical disruption of the NRG-1/ERBB4 pathway reduces STAT5b activation and transcription of STAT5b target genes Igf1, Myc, and Cdkn1a in murine cardiomyocytes. Loss of Stat5b also ablates NRG-1-induced cardiomyocyte hypertrophy. Dynamin-2 is shown to control the cell surface localization of ERBB4 and chemical inhibition of Dynamin-2 downregulates STAT5b activation and cardiomyocyte hypertrophy. In zebrafish embryos, Stat5 is activated during NRG-1-induced hyperplastic myocardial growth, and chemical inhibition of the Nrg-1/Erbb4 pathway or Dynamin-2 leads to loss of myocardial growth and Stat5 activation. Moreover, CRISPR/Cas9-mediated knockdown of stat5b results in reduced myocardial growth and cardiac function. Finally, the NRG-1/ERBB4/STAT5b signaling pathway is differentially regulated at mRNA and protein levels in the myocardium of patients with pathological cardiac hypertrophy as compared to control human subjects, consistent with a role of the NRG-1/ERBB4/STAT5b pathway in myocardial growth.


Assuntos
Dinamina II , Neuregulina-1 , Camundongos , Humanos , Animais , Dinamina II/metabolismo , Neuregulina-1/genética , Neuregulina-1/metabolismo , Neuregulina-1/farmacologia , Fator de Transcrição STAT5/genética , Fator de Transcrição STAT5/metabolismo , Peixe-Zebra/metabolismo , Receptor ErbB-4/genética , Receptor ErbB-4/metabolismo , Hipertrofia
17.
Cardiovasc Res ; 119(7): 1553-1567, 2023 07 04.
Artigo em Inglês | MEDLINE | ID: mdl-36951047

RESUMO

AIMS: Cardiac energy metabolism is centrally involved in heart failure (HF), although the direction of the metabolic alterations is complex and likely dependent on the particular stage of HF progression. Vascular endothelial growth factor B (VEGF-B) has been shown to modulate metabolic processes and to induce physiological cardiac hypertrophy; thus, it could be cardioprotective in the failing myocardium. This study investigates the role of VEGF-B in cardiac proteomic and metabolic adaptation in HF during aldosterone and high-salt hypertensive challenges. METHODS AND RESULTS: Male rats overexpressing the cardiac-specific VEGF-B transgene (VEGF-B TG) were treated for 3 or 6 weeks with deoxycorticosterone-acetate combined with a high-salt (HS) diet (DOCA + HS) to induce hypertension and cardiac damage. Extensive longitudinal echocardiographic studies of HF progression were conducted, starting at baseline. Sham-treated rats served as controls. To evaluate the metabolic alterations associated with HF, cardiac proteomics by mass spectrometry was performed. Hypertrophic non-treated VEGF-B TG hearts demonstrated high oxygen and adenosine triphosphate (ATP) demand with early onset of diastolic dysfunction. Administration of DOCA + HS to VEGF-B TG rats for 6 weeks amplified the progression from cardiac hypertrophy to HF, with a drastic drop in heart ATP concentration. Dobutamine stress echocardiographic analyses uncovered a significantly impaired systolic reserve. Mechanistically, the hallmark of the failing TG heart was an abnormal energy metabolism with decreased mitochondrial ATP, preceding the attenuated cardiac performance and leading to systolic HF. CONCLUSIONS: This study shows that the VEGF-B TG accelerates metabolic maladaptation which precedes structural cardiomyopathy in experimental hypertension and ultimately leads to systolic HF.


Assuntos
Acetato de Desoxicorticosterona , Insuficiência Cardíaca Sistólica , Insuficiência Cardíaca , Hipertensão , Ratos , Masculino , Animais , Fator B de Crescimento do Endotélio Vascular/metabolismo , Insuficiência Cardíaca Sistólica/complicações , Proteômica , Hipertensão/metabolismo , Miocárdio/metabolismo , Insuficiência Cardíaca/genética , Insuficiência Cardíaca/complicações , Cardiomegalia/genética , Cardiomegalia/metabolismo
18.
EMBO J ; 42(5): e109032, 2023 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-36715213

RESUMO

Despite a growing catalog of secreted factors critical for lymphatic network assembly, little is known about the mechanisms that modulate the expression level of these molecular cues in blood vascular endothelial cells (BECs). Here, we show that a BEC-specific transcription factor, SOX7, plays a crucial role in a non-cell-autonomous manner by modulating the transcription of angiocrine signals to pattern lymphatic vessels. While SOX7 is not expressed in lymphatic endothelial cells (LECs), the conditional loss of SOX7 function in mouse embryos causes a dysmorphic dermal lymphatic phenotype. We identify novel distant regulatory regions in mice and humans that contribute to directly repressing the transcription of a major lymphangiogenic growth factor (Vegfc) in a SOX7-dependent manner. Further, we show that SOX7 directly binds HEY1, a canonical repressor of the Notch pathway, suggesting that transcriptional repression may also be modulated by the recruitment of this protein partner at Vegfc genomic regulatory regions. Our work unveils a role for SOX7 in modulating downstream signaling events crucial for lymphatic patterning, at least in part via the transcriptional repression of VEGFC levels in the blood vascular endothelium.


Assuntos
Células Endoteliais , Vasos Linfáticos , Humanos , Camundongos , Animais , Células Endoteliais/metabolismo , Vasos Linfáticos/metabolismo , Regulação da Expressão Gênica , Endotélio Vascular , Fatores de Transcrição/metabolismo , Linfangiogênese/genética , Fatores de Transcrição SOXF/genética , Fatores de Transcrição SOXF/metabolismo
19.
Cell Mol Life Sci ; 80(2): 54, 2023 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-36715759

RESUMO

Neural stem cells reside in the subgranular zone, a specialized neurogenic niche of the hippocampus. Throughout adulthood, these cells give rise to neurons in the dentate gyrus, playing an important role in learning and memory. Given that these core cognitive processes are disrupted in numerous disease states, understanding the underlying mechanisms of neural stem cell proliferation in the subgranular zone is of direct practical interest. Here, we report that mature neurons, neural stem cells and neural precursor cells each secrete the neurovascular protein epidermal growth factor-like protein 7 (EGFL7) to shape this hippocampal niche. We further demonstrate that EGFL7 knock-out in a Nestin-CreERT2-based mouse model produces a pronounced upregulation of neurogenesis within the subgranular zone. RNA sequencing identified that the increased expression of the cytokine VEGF-D correlates significantly with the ablation of EGFL7. We substantiate this finding with intraventricular infusion of VEGF-D upregulating neurogenesis in vivo and further show that VEGF-D knock-out produces a downregulation of neurogenesis. Finally, behavioral studies in EGFL7 knock-out mice demonstrate greater maintenance of spatial memory and improved memory consolidation in the hippocampus by modulation of pattern separation. Taken together, our findings demonstrate that both EGFL7 and VEGF-D affect neurogenesis in the adult hippocampus, with the ablation of EGFL7 upregulating neurogenesis, increasing spatial learning and memory, and correlating with increased VEGF-D expression.


Assuntos
Células-Tronco Neurais , Camundongos , Animais , Células-Tronco Neurais/metabolismo , Aprendizagem Espacial , Fator D de Crescimento do Endotélio Vascular/metabolismo , Proliferação de Células/fisiologia , Hipocampo/metabolismo , Neurogênese/genética , Camundongos Knockout , Peptídeos e Proteínas de Sinalização Intercelular/metabolismo
20.
Proc Natl Acad Sci U S A ; 119(49): e2116220119, 2022 12 06.
Artigo em Inglês | MEDLINE | ID: mdl-36459642

RESUMO

Rhabdomyosarcoma (RMS) is an aggressive pediatric soft-tissue cancer with features of skeletal muscle. Because of poor survival of RMS patients and severe long-term side effects of RMS therapies, alternative RMS therapies are urgently needed. Here we show that the prospero-related homeobox 1 (PROX1) transcription factor is highly expressed in RMS tumors regardless of their cell type of origin. We demonstrate that PROX1 is needed for RMS cell clonogenicity, growth and tumor formation. PROX1 gene silencing repressed several myogenic and tumorigenic transcripts and transformed the RD cell transcriptome to resemble that of benign mesenchymal stem cells. Importantly, we found that fibroblast growth factor receptors (FGFR) mediated the growth effects of PROX1 in RMS. Because of receptor cross-compensation, paralog-specific FGFR inhibition did not mimic the effects of PROX1 silencing, whereas a pan-FGFR inhibitor ablated RMS cell proliferation and induced apoptosis. Our findings uncover the critical role of PROX1 in RMS and offer insights into the mechanisms that regulate RMS development and growth. As FGFR inhibitors have already been tested in clinical phase I/II trials in other cancer types, our findings provide an alternative option for RMS treatment.


Assuntos
Genes Homeobox , Rabdomiossarcoma , Humanos , Criança , Fatores de Transcrição , Rabdomiossarcoma/tratamento farmacológico , Rabdomiossarcoma/genética , Regulação da Expressão Gênica , Receptores de Fatores de Crescimento de Fibroblastos , Transcriptoma , Inibidores de Proteínas Quinases
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...